Advances in the PANDORA Matlab Toolbox for neural database analysis

Cengiz Günay

cgunay@ggc.edu

School of Science and Technology, Georgia Gwinnett College (previously developed at Emory University)

CNS*2020 Software Showcase #3 July 18, 2020

Advances in neural database analysis with Pandora

→ Ξ →

Outline

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

3 Database analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

Use it if:

- You are already using Matlab
- 2 Python and other environments are too complex or unsustainable in your lab

Use it if:

- You are already using Matlab
- Python and other environments are too complex or unsustainable in your lab Seriously, why would anyone still use Matlab?
 - If you're just starting in computational neuroscience, probably the best option is using Python (Jupyter notebooks, etc)
 - e However, even though Python and its modules have improved considerably, they still require a bit of maintenance
 - Matlab still has its audience in non-programmer, scientist communities (e.g. experimentalists)
 - Solution Also many researchers can't quit Matlab because of inherited legacy code

Main features of the Pandora toolbox

Has several independent, major features-not limited one type of data or analysis:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output

Main features of the Pandora toolbox

Has several independent, major features-not limited one type of data or analysis:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output
- 2 Analysis of model or experimental data using a *Dataframe*-like objects
 - Creating a database from tabular data for querying and plotting.
 - Putting results from analysis of voltage traces of multiple models into a database.
 - Advanced operations with a database: statistics, multivariate analysis, etc.

> < 三 > < 三 >

Main features of the Pandora toolbox

Has several independent, major features-not limited one type of data or analysis:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output
- 2 Analysis of model or experimental data using a *Dataframe*-like objects
 - Creating a database from tabular data for querying and plotting.
 - Putting results from analysis of voltage traces of multiple models into a database.
 - Advanced operations with a database: statistics, multivariate analysis, etc.
- Improved plotting functions
 - Matlab's plotting functions are augmented
 - Can stack subplots that share same axes
 - Control spacing between subplots
 - Render plots based on export size to produce publication-quality figures

dvances in neural database analysis with Pandora

- Simple model simulation and parameter fitting
 - Can simulate simple neuronal structures such as single ion channels and passive membrane
 - Useful for fitting responses from voltage and current clamp protocols
 - For instance, you can compensate for series resistance artifacts
 - Used in Gunay et al (2015) *PLOS Comp Bio* Gunay et al (2015) PLOS Comp Bio and packaged separately as param-fitter

- Simple model simulation and parameter fitting
 - Can simulate simple neuronal structures such as single ion channels and passive membrane
 - Useful for fitting responses from voltage and current clamp protocols
 - For instance, you can compensate for series resistance artifacts
 - Used in Gunay et al (2015) *PLOS Comp Bio* Gunay et al (2015) PLOS Comp Bio and packaged separately as param-fitter
- Ø Model simulation parameter optimization
 - Uses the GODLIKE toolbox that can run **multiple optimization algorithms** (multi-objective evolutionary algorithms, swarm, ...)
 - Can control running simulations by calling an external simulator like Neuron, GENESIS, etc)
 - Experimental feature used in Gunay et al (2019) eNeuro and published on Github

Pandora is originally described in Günay et al. (2009) *Neuroinformatics*; and documentation can be found on Github and Mathworks File Exchange pages.

・ 何 ト ・ ヨ ト ・ ヨ ト

The basic Pandora workflow

C. Günay (Georgia Gwinnett C.)

vances in neural database analysis with Pandora

CNS*2020 July 18, 2020 6 / 20

Introduction to Pandora

2 Analyzing voltage trace data

- Loading a membrane voltage trace
- Analyzing a membrane voltage trace

3 Database analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

Loading a membrane voltage trace

Pandora can read the file formats from:

- Simulators:
 - Neuron, Genesis, others can be added
- Oata acquisition programs:
 - All NeuroShare-compatible acquisition devices (Alpha Omega, Cambridge Electronic Design, NeuroExplorer, Plexon, R.C. Electronics Inc., Tucker-Davis Technologies, and Cyberkinetics Inc., etc.)
- Other:
 - Simple text file, CSV, Hierarchical data format (HDF5)

Tutorial demo on Github

Analyzing a membrane voltage trace By extracting electropysiological characteristics

- Measure spike shape and firing rate properties
- Measure sag, spike adaptation and current response properties
- Can be done repetitively for a large number of models
- Can be entered into a Matlab database

annotated spike characteristics

Tutorial demo on Github

C. Günay (Georgia Gwinnett C.)

Advances in neural database analysis with Pandor

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

Oatabase analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

What do we mean by database analysis?

- Labeling columns and rows of numerical matrices.
- Makes scripts more readable
- Labels propagate into plots and reports, reducing human errors.

What do we mean by database analysis?

- Labeling columns and rows of numerical matrices.
- Makes scripts more readable
- Labels propagate into plots and reports, reducing human errors.

It's not new:

- R had similar concept of Dataframe earlier
- Python acquired Dataframes with the pandas package, around the same time as Pandora :)
- Matlab introduced the table command recently, with similar functionality
- Pandora still offers some benefits as an integrated environment

Creating a database from arbitrary data

Create a 2×2 database matrix:

vances in neural database analysis with Pandora

Creating a database from arbitrary data

Create a 2×2 database matrix:


```
With Matlab code:
>> db_obj =
      tests_db([1 2; 3 4],
      {'col1', 'col2'},
      {'row1', 'row2'}, 'a 2x2 DB')
```

ances in neural database analysis with Pandora

Creating a database from arbitrary data

Create a 2×2 database matrix:


```
With Matlab code:
>> db_obj =
        tests_db([1 2; 3 4],
            {'col1', 'col2'},
            {'row1', 'row2'}, 'a 2x2 DB')
```

Can also import text files as database (e.g., Excel export).

Using a dataset:

```
>> my_dataset_obj =
    my_dataset_class('data/*.bin', arguments...)
```

Using a dataset:

```
>> my_dataset_obj =
    my_dataset_class('data/*.bin', arguments...)
>> my_database_obj =
    param_tests_db(my_dataset_obj)
```

```
Using a dataset:
```

```
>> my_dataset_obj =
    my_dataset_class('data/*.bin', arguments...)
>> my_database_obj =
    param_tests_db(my_dataset_obj)
>> sorted_obj =
    sortrows(my_database_obj, 'AP_amplitude')
```

vances in neural database analysis with Pandora

CNS*2020 July 18, 2020 14 / 20

э

```
>> db_obj2 =
    db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
    db_obj(db_obj(:, 'neuron_index') == 46, :)
```

C. Günay (Georgia Gwinnett C.) Advances in neural database analysis with Pandora

글 > : < 글

```
>> db_obj2 =
    db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
    db_obj(db_obj(:, 'neuron_index') == 46, :)
>> db_obj2 =
    db_obj(anyRows(db_obj(:, 'neuron_index'),
        [46; 56; 12]), :)
```

```
>> db_obj2 =
     db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46, :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                    [46: 56: 12]), :)
>> db_obi2 =
     db_obj(db_obj(:, 'neuron_index') ~= 46 &
            (db_obj(:, 'CIP') > 100 |
             db_obj(:, 'rate') <= 50 ), :)
```

```
>> db_obj2 =
     db obj(1:10, {'neuron index', 'fire rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46. :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                     [46: 56: 12]), :)
>> db_obi2 =
     db_obj(db_obj(:, 'neuron_index') ~= 46 &
            (db_obj(:, 'CIP') > 100 |
             db_obj(:, 'rate') <= 50 ), :)
>> db_obj2 =
     model_db_obj(anyRows(model_db_obj(:, 'rate'),
                  neuron_db_obj(:, 'rate')), :)
                         Tutorial demo on Github
```

dvances in neural database analysis with Pandora

Multivariate analysis with non-grid data

Tetrodotoxin block effects on firing rate of globus pallidus neurons with current injection

Multivariate analysis (I) Sifting the database to find effects of parameters

Sample with 3 Neurons:

PicroTx	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
KynAcid	0.001	0.001	0.001	0.001	0.001	0.001
TTX	0	7 <i>e</i> – 09	0	7 <i>e</i> – 09	0	7 <i>e</i> – 09
Apamin	0	0	0	0	0	0
drug 4AP	0	0	0	0	0	0
NeuronId	107	107	108	108	110	110
D100pA steady rate	25.9982	19.6056	29.9673	22.7628	23.8443	20.9744

Focus on changes with TTX:

C. Günay (Georgia Gwinnett C.)

dvances in neural database analysis with Pandor

Multivariate analysis (II) Processing database contents

Change in rate (Δ) between successive TTX levels:

Regrouping to find average values for each TTX level:

	Page 1			Page 2		
TTX	0	0	0	7e - 09	7 <i>e</i> – 09	7 <i>e</i> – 09
D100pA steady rate	25.9982	29.9673	23.8443	19.6056	22.7628	20.9744
RowIndex	1	3	5	2	4	6

DEMO

C. Günay (Georgia Gwinnett C.)

lvances in neural database analysis with Pando

CNS*2020 July 18, 2020 17 / 20

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

3 Database analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

Try it out and share your feedback

How to access Pandora:

- Main publication: Günay et al. (2009) Neuroinformatics
- Downloads and documentation on Github and Mathworks File Exchange pages

How to give feedback/ask questions:

- Open issues and "star" project on Github
- Also looking for developers to improve it
- Email: cgunay AT ggc.edu
- Fill our survey please!

Credits goes to:

• Supervisors who supported development, Dieter Jaeger and Astrid Prinz, from Emory Univ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Several other contributors, see full list at our Github page
- Cite our paper above and the RRID if you use Pandora, and send us a message!

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

Oatabase analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion