Signal processing and data analysis in Matlab

Cengiz Günay

cgunay@ggc.edu

School of Science and Technology, Georgia Gwinnett College (previously developed at Emory University)

CNS*2021 Satellite Tutorial SA3 June 30, 2021

ignal processing and data analysis in Matl

Outline

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

3 Database analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

Use it if:

- You are already using Matlab
- 2 Python and other environments are too complex or unsustainable in your lab

Use it if:

- You are already using Matlab
- Python and other environments are too complex or unsustainable in your lab Seriously, why would anyone still use Matlab?
 - If you're just starting in computational neuroscience, probably the best option is using Python (Jupyter notebooks, etc)
 - e However, even though Python and its modules have improved considerably, they still require a bit of maintenance
 - Matlab still has its audience in non-programmer, scientist communities (e.g. experimentalists)
 - Also many researchers can't quit Matlab because of inherited legacy code

Main features of the Pandora toolbox

Has several independent, major features-not limited one type of data or analysis:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output

Main features of the Pandora toolbox

Has several independent, major features-not limited one type of data or analysis:

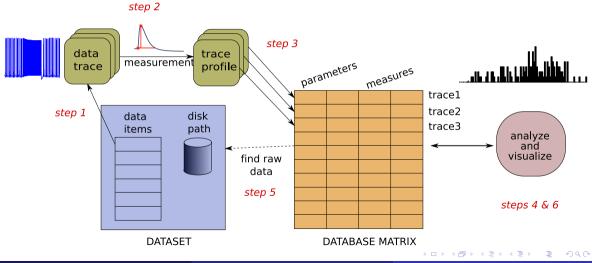
- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output
- 2 Analysis of model or experimental data using a *Dataframe*-like objects
 - Creating a database from tabular data for querying and plotting.
 - Putting results from analysis of voltage traces of multiple models into a database.
 - Advanced operations with a database: statistics, multivariate analysis, etc.

Main features of the Pandora toolbox

Has several independent, major features-not limited one type of data or analysis:

- **③** Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output
- ② Analysis of model or experimental data using a *Dataframe*-like objects
 - Creating a database from tabular data for querying and plotting.
 - Putting results from analysis of voltage traces of multiple models into a database.
 - Advanced operations with a database: statistics, multivariate analysis, etc.
- Improved plotting functions
 - Matlab's plotting functions are augmented
 - Can stack subplots that share same axes
 - Control spacing between subplots
 - Render plots based on export size to produce publication-quality figures

nal processing and data analysis in Matlal


- Simple model simulation and parameter fitting
 - Can simulate simple neuronal structures such as single ion channels and passive membrane
 - Useful for fitting responses from voltage and current clamp protocols
 - For instance, you can compensate for series resistance artifacts
 - Used in Gunay et al (2015) *PLOS Comp Bio* Gunay et al (2015) PLOS Comp Bio and packaged separately as param-fitter

- Simple model simulation and parameter fitting
 - Can simulate simple neuronal structures such as single ion channels and passive membrane
 - Useful for fitting responses from voltage and current clamp protocols
 - For instance, you can compensate for series resistance artifacts
 - Used in Gunay et al (2015) *PLOS Comp Bio* Gunay et al (2015) PLOS Comp Bio and packaged separately as param-fitter
- Ø Model simulation parameter optimization
 - Uses the GODLIKE toolbox that can run **multiple optimization algorithms** (multi-objective evolutionary algorithms, swarm, ...)
 - Can control running simulations by calling an external simulator like Neuron, GENESIS, etc)
 - Experimental feature used in Gunay et al (2019) eNeuro and published on Github

Pandora is originally described in Günay et al. (2009) *Neuroinformatics*; and documentation can be found on Github and Mathworks File Exchange pages.

伺下 イヨト イヨト

The basic Pandora workflow

Günay (Georgia Gwinnett College)

al processing and data analysis in Matlal

CNS*2021/SA3 June 30, 2021 6 / 23

Installing the Pandora toolbox

Download from:

• Mathworks File Exchange (see below if you don't want to create an account) Installation: Follow instructions on Github

- Extract ZIP
- Add classes and functions folders to the Matlab search path:

🥠 ^								
HOME PLOTS	APPS							
🛃 🛟 🔽 🗔 Find Files	.		🖶 New Variable 🔂 Open Variab		🛃 Analyze Code		O Preferences Set Path	
New New Open 12 Compare	Import Data	Save Workspace	Clear Works	pace 💌	Clear Commands CODE	Layout T	Paralle Change th	
💠 🔶 🗊 🖾 / 🕨 home 🕨 cengiz 🕨 writings 🕨 brute-force 🕨 pandora 🕨								
Current Folder Command Window								
📄 Name	SVN	Size		New to	MATLAB? See resources f	or <u>Gettin</u>	ig Started.	
makepng	•	1 KB		Sta	rting parallel pool	(parp	ool) using the	
NOTES ■ supp-tables.au×	•	3 KB 3 KB		ans	-			

Günay (Georgia Gwinnett College)

Matlab path should look like this

source 利	\ ^		Set Path		-		\times	
	Al changes take effect imr	mediately.						
	-	MATLA	B search path:					
	Add Folder		me/cengiz/tmp/pandora/class				•	
	Add with Subfolders		me/cengiz/Documents/MATLA	В				
			me/cengiz/matlab					
			/local/MATLAB/R2015b/toolbo					
		A ^	Add Folder to Path		- 0	×		
		~	Had Folder to Fath			\sim		
		Look In: 🗀 p	andora	-	🛍 🏠 🍱			
	Move to Top							
3	Move Up	🗀 classes						
	Move Down	doc 🦳						
	Move Down	examples						
	Move to Bottom	test_suite						
		- cest_sone						
:ions								
ige	Remove		[1	
-	Nemove	Folder <u>n</u> ame:	/home/cengiz/tmp/pandora/fun	ctions			J	
		Files of <u>Type</u> :	All Files			-		
	- Returns histogr			_				
					Opin C	ancel		
hods:	_				Con an ante			_

Günay (Georgia Gwinnett College)

ъ

In Matlab type:

```
>> help tests_db
```

Your installation is **successful** if you see:

```
tests_db - Construct a numeric database organized in a matrix format.
```

```
Usage:
    obj = tests_db(test_results, col_names, row_names, id, props)
[and a lot more here]
```

. . .

Otherwise, it is broken if you see:

```
>> help tests_db
tests_db not found.
```

Introduction to Pandora

2 Analyzing voltage trace data

- Loading a membrane voltage trace
- Analyzing a membrane voltage trace

3 Database analysis with Pandora

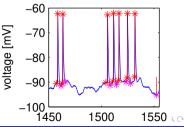
- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

Loading a membrane voltage trace

Pandora can read the file formats from:

- Simulators:
 - Neuron, Genesis, others can be added
- Oata acquisition programs:
 - All NeuroShare-compatible acquisition devices (Alpha Omega, Cambridge Electronic Design, NeuroExplorer, Plexon, R.C. Electronics Inc., Tucker-Davis Technologies, and Cyberkinetics Inc., etc.)
- Other:
 - Simple text file, CSV, Hierarchical data format (HDF5)


Tutorial demo on Github

Analyzing a membrane voltage trace By extracting electropysiological characteristics

- Measure spike shape and firing rate properties
- Measure sag, spike adaptation and current response properties
- Can be done repetitively for a large number of models
- Can be entered into a Matlab database

annotated spike characteristics

Tutorial demo on Github

Günay (Georgia Gwinnett College)

Signal processing and data analysis in Matla

CNS*2021/SA3 June 30, 2021

12/23

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

Oatabase analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

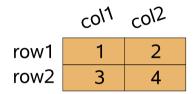
4 Conclusion

What do we mean by database analysis?

- Labeling columns and rows of numerical matrices.
- Makes scripts more readable
- Labels propagate into plots and reports, reducing human errors.

What do we mean by database analysis?

- Labeling columns and rows of numerical matrices.
- Makes scripts more readable
- Labels propagate into plots and reports, reducing human errors.

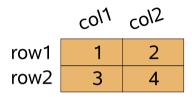

It's not new:

- R had similar concept of Dataframe earlier
- Python acquired Dataframes with the pandas package, around the same time as Pandora :)
- Matlab introduced the table command recently, with similar functionality
- Pandora still offers some benefits as an integrated environment

14 / 23

Creating a database from arbitrary data

Create a 2×2 database matrix:



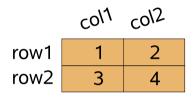
ignal processing and data analysis in Matlal

CNS*2021/SA3 June 30, 2021 15 / 23

Creating a database from arbitrary data

Create a 2×2 database matrix:

With Matlab code: >> db_obj = tests_db([1 2; 3 4], {'col1', 'col2'}, {'row1', 'row2'}, 'a 2x2 DB')


Günay (Georgia Gwinnett College)

Signal processing and data analysis in Mat

CNS*2021/SA3 June 30, 2021 15 / 23

Creating a database from arbitrary data

Create a 2×2 database matrix:


```
With Matlab code:
>> db_obj =
      tests_db([1 2; 3 4],
            {'col1', 'col2'},
            {'row1', 'row2'}, 'a 2x2 DB')
```

Can also import text files as database (e.g., Excel export).

Using a dataset:

```
>> my_dataset_obj =
    my_dataset_class('data/*.bin', arguments...)
```

Using a dataset:

```
>> my_dataset_obj =
    my_dataset_class('data/*.bin', arguments...)
>> my_database_obj =
    param_tests_db(my_dataset_obj)
```

```
Using a dataset:
```

```
>> my_dataset_obj =
    my_dataset_class('data/*.bin', arguments...)
>> my_database_obj =
    param_tests_db(my_dataset_obj)
>> sorted_obj =
    sortrows(my_database_obj, 'AP_amplitude')
```

CNS*2021/SA3 June 30, 2021 17 / 23

ъ

э

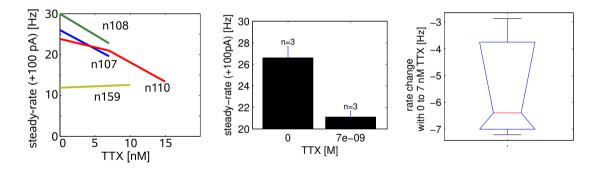
```
>> db_obj2 =
     db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46, :)
```

> < 三 > < 三 > CNS*2021/SA3 June 30, 2021 17 / 23

3

```
>> db_obj2 =
     db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46, :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                    [46: 56: 12]), :)
>> db_obi2 =
     db_obj(db_obj(:, 'neuron_index') ~= 46 &
            (db_obj(:, 'CIP') > 100 |
             db_obj(:, 'rate') <= 50 ), :)
```

CNS*2021/SA3 June 30. 2021


17 / 23

```
>> db_obj2 =
     db obj(1:10, {'neuron index', 'fire rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46. :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                     [46: 56: 12]), :)
>> db_obi2 =
     db_obj(db_obj(:, 'neuron_index') ~= 46 &
            (db_obj(:, 'CIP') > 100 |
             db_obj(:, 'rate') <= 50 ), :)
>> db_obj2 =
     model_db_obj(anyRows(model_db_obj(:, 'rate'),
                  neuron_db_obj(:, 'rate')), :)
                         Tutorial demo on Github
```

nal processing and data analysis in Matlah

Multivariate analysis with non-grid data

Tetrodotoxin block effects on firing rate of globus pallidus neurons with current injection

Tutorial demo on Github

ignal processing and data analysis in Matla

CNS*2021/SA3 June 30, 2021

18/23

Multivariate analysis (I) Sifting the database to find effects of parameters

Sample with 3 Neurons:

PicroTx	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
KynAcid	0.001	0.001	0.001	0.001	0.001	0.001
TTX	0	7e - 09	0	7e - 09	0	7 <i>e</i> – 09
Apamin	0	0	0	0	0	0
drug 4AP	0	0	0	0	0	0
NeuronId	107	107	108	108	110	110
D100pA steady rate	25.9982	19.6056	29.9673	22.7628	23.8443	20.9744

Focus on changes with TTX:

Günay (Georgia Gwinnett College)

gnal processing and data analysis in Math

Multivariate analysis (II) Processing database contents

Change in rate (Δ) between successive TTX levels:

Regrouping to find average values for each TTX level:

		Page 1		Page 2			
TTX	0	0	0	7 <i>e</i> – 09	7 <i>e</i> – 09	7 <i>e</i> – 09	
D100pA steady rate	25.9982	29.9673	23.8443	19.6056	22.7628	20.9744	
RowIndex	1	3	5	2	4	6	

DEMO

Günay (Georgia Gwinnett College)

nal processing and data analysis in Matl

CNS*2021/SA3 June 30, 2021

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

3 Database analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion

Try it out and share your feedback

How to access Pandora:

- Main publication: Günay et al. (2009) Neuroinformatics
- Downloads and documentation on Github and Mathworks File Exchange pages

How to give feedback/ask questions:

- Open issues and "star" project on Github
- Also looking for developers to improve it
- Email: cgunay AT ggc.edu
- Fill our survey please!

Credits goes to:

• Supervisors who supported development, Dieter Jaeger and Astrid Prinz, from Emory Univ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Several other contributors, see full list at our Github page
- Cite our paper above and the RRID if you use Pandora, and send us a message!

Introduction to Pandora

- 2 Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace

Oatabase analysis with Pandora

- Creating a database from arbitrary data
- Creating a database from analysis of traces
- Multivariate analysis with database objects

4 Conclusion